Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 668
1.
Molecules ; 28(2)2023 Jan 09.
Article En | MEDLINE | ID: mdl-36677714

CAD is a 1.5 MDa hexameric protein with four enzymatic domains responsible for initiating de novo biosynthesis of pyrimidines nucleotides: glutaminase, carbamoyl phosphate synthetase, aspartate transcarbamoylase (ATC), and dihydroorotase. Despite its central metabolic role and implication in cancer and other diseases, our understanding of CAD is poor, and structural characterization has been frustrated by its large size and sensitivity to proteolytic cleavage. Recently, we succeeded in isolating intact CAD-like particles from the fungus Chaetomium thermophilum with high yield and purity, but their study by cryo-electron microscopy is hampered by the dissociation of the complex during sample grid preparation. Here we devised a specific crosslinking strategy to enhance the stability of this mega-enzyme. Based on the structure of the isolated C. thermophilum ATC domain, we inserted by site-directed mutagenesis two cysteines at specific locations that favored the formation of disulfide bridges and covalent oligomers. We further proved that this covalent linkage increases the stability of the ATC domain without damaging the structure or enzymatic activity. Thus, we propose that this cysteine crosslinking is a suitable strategy to strengthen the contacts between subunits in the CAD particle and facilitate its structural characterization.


Aspartate Carbamoyltransferase , Aspartic Acid , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/chemistry , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cryoelectron Microscopy , Proteins , Dihydroorotase/chemistry , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism
2.
Sci Immunol ; 7(71): eabh4271, 2022 05 27.
Article En | MEDLINE | ID: mdl-35622902

Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their capacity to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting their rapid recall response are incompletely understood. Here, we identify a role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously activated CD8+ T cells. We found that CAD was rapidly phosphorylated upon naïve T cell activation in an mTORC1-dependent manner, yet remained phosphorylated long after initial activation. Previously activated CD8+ T cells displayed continued de novo pyrimidine synthesis in the absence of mitogenic signals, and interfering with this pathway diminished the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD did not affect cytokine transcript levels but diminished available pre-rRNA (ribosomal RNA), the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreased levels of detectable ribosomal proteins in previously activated CD8+ T cells. Conversely, overexpression of CAD improved both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.


Aspartate Carbamoyltransferase , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cytokines , Pyrimidines
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article En | MEDLINE | ID: mdl-34638594

CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.


Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Dihydroorotase/metabolism , Pyrimidines/biosynthesis , Animals , Humans , Mammals/metabolism
4.
Protein Sci ; 30(10): 1995-2008, 2021 10.
Article En | MEDLINE | ID: mdl-34288185

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein divided into different enzymatic domains, each catalyzing one of the initial reactions for de novo biosynthesis of pyrimidine nucleotides: glutaminase-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase. The pathway for de novo pyrimidine synthesis is essential for cell proliferation and is conserved in all living organisms, but the covalent linkage of the first enzymatic activities into a multienzymatic CAD particle is unique to animals. In other organisms, these enzymatic activities are encoded as monofunctional proteins for which there is abundant structural and biochemical information. However, the knowledge about CAD is scarce and fragmented. Understanding CAD requires not only to determine the three-dimensional structures and define the catalytic and regulatory mechanisms of the different enzymatic domains, but also to comprehend how these domains entangle and work in a coordinated and regulated manner. This review summarizes significant progress over the past 10 years toward the characterization of CAD's architecture, function, regulatory mechanisms, and cellular compartmentalization, as well as the recent finding of a new and rare neurometabolic disorder caused by defects in CAD activities.


Aspartate Carbamoyltransferase , Brain Diseases, Metabolic/enzymology , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) , Dihydroorotase , Animals , Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/chemistry , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Dihydroorotase/chemistry , Dihydroorotase/metabolism , Humans , Protein Domains
5.
Nat Commun ; 12(1): 947, 2021 02 11.
Article En | MEDLINE | ID: mdl-33574254

Aspartate transcarbamoylase (ATC), an essential enzyme for de novo pyrimidine biosynthesis, is uniquely regulated in plants by feedback inhibition of uridine 5-monophosphate (UMP). Despite its importance in plant growth, the structure of this UMP-controlled ATC and the regulatory mechanism remain unknown. Here, we report the crystal structures of Arabidopsis ATC trimer free and bound to UMP, complexed to a transition-state analog or bearing a mutation that turns the enzyme insensitive to UMP. We found that UMP binds and blocks the ATC active site, directly competing with the binding of the substrates. We also prove that UMP recognition relies on a loop exclusively conserved in plants that is also responsible for the sequential firing of the active sites. In this work, we describe unique regulatory and catalytic properties of plant ATCs that could be exploited to modulate de novo pyrimidine synthesis and plant growth.


Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Catalytic Domain/drug effects , Feedback/drug effects , Uridine Monophosphate/antagonists & inhibitors , Arabidopsis/genetics , Arabidopsis/metabolism , Aspartate Carbamoyltransferase/genetics , Aspartic Acid/metabolism , Binding Sites , Models, Molecular , Protein Conformation , Pyrimidines
7.
Cells ; 9(5)2020 05 01.
Article En | MEDLINE | ID: mdl-32370067

Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.


Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Dihydroorotase/metabolism , Ebolavirus/physiology , Genome, Viral , Inclusion Bodies, Viral/metabolism , Nucleoproteins/metabolism , Transcription, Genetic , Viral Proteins/metabolism , Virus Replication , Animals , Aspartate Carbamoyltransferase/chemistry , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/chemistry , Cell Line , Dihydroorotase/chemistry , Ebolavirus/genetics , Gene Knockdown Techniques , Humans , Protein Binding/drug effects , Protein Domains , Pyrimidines/pharmacology , RNA/metabolism
8.
PLoS One ; 15(3): e0229494, 2020.
Article En | MEDLINE | ID: mdl-32126100

Pseudomonas aeruginosa is a virulent pathogen that has become more threatening with the emergence of multidrug resistance. The aspartate transcarbamoylase (ATCase) of this organism is a dodecamer comprised of six 37 kDa catalytic chains and six 45 kDa chains homologous to dihydroorotase (pDHO). The pDHO chain is inactive but is necessary for ATCase activity. A stoichiometric mixture of the subunits associates into a dodecamer with full ATCase activity. Unlike other known ATCases, the P. aeruginosa catalytic chain does not spontaneously assemble into a trimer. Chemical-crosslinking and size-exclusion chromatography showed that P. aeruginosa ATCase is monomeric which accounts for its lack of catalytic activity since the active site is a composite comprised of residues from adjacent monomers in the trimer. Circular dichroism spectroscopy indicated that the ATCase chain adopts a structure that contains secondary structure elements although neither the ATCase nor the pDHO subunits are very stable as determined by a thermal shift assay. Formation of the complex increases the melting temperature by about 30°C. The ATCase is strongly inhibited by all nucleotide di- and triphosphates and exhibits extreme cooperativity. Previous studies suggested that the regulatory site is located in an 11-residue extension of the amino end of the catalytic chain. However, deletion of the extensions did not affect catalytic activity, nucleotide inhibition or the assembly of the dodecamer. Nucleotides destabilized the dodecamer which probably accounts for the inhibition and apparent cooperativity of the substrate saturation curves. Contrary to previous interpretations, these results suggest that P. aeruginosa ATCase is not allosterically regulated by nucleotides.


Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Dihydroorotase/chemistry , Dihydroorotase/metabolism , Pseudomonas aeruginosa/enzymology , Amino Acid Motifs , Aspartate Carbamoyltransferase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Catalytic Domain , Circular Dichroism , Dihydroorotase/genetics , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Thermodynamics
9.
Arch Microbiol ; 202(6): 1551-1557, 2020 Aug.
Article En | MEDLINE | ID: mdl-32125450

The control of pyrimidine nucleotide formation in the bacterium Pseudomonas aurantiaca ATCC 33663 by pyrimidines was studied. The activities of the pyrimidine biosynthetic pathway enzymes were investigated in P. aurantiaca ATCC 33663 cells and from cells of an auxotroph lacking orotate phosphoribosyltransferase activity under selected culture conditions. All activities of the pyrimidine biosynthetic pathway enzymes in ATCC 33663 cells were depressed by uracil addition to the minimal medium when succinate served as the carbon source. In contrast, all pyrimidine biosynthetic pathway enzyme activities in ATCC 33663 cells were depressed by orotic acid supplementation to the minimal medium when glucose served as the carbon source. The orotidine 5'-monophosphate decarboxylase activity in the phosphoribosyltransferase mutant strain increased by more than sixfold in succinate-grown cells and by more than 16-fold in glucose-grown cells after pyrimidine limitation showing possible repression of the decarboxylase by a pyrimidine-related compound. Inhibition by ATP, GTP, UTP and pyrophosphate of the in vitro activity of aspartate transcarbamoylase in ATCC 33663 was observed. The findings demonstrated control at the level of pyrimidine biosynthetic enzyme synthesis and activity for the P. aurantiaca transcarbamoylase. The control of pyrimidine synthesis in P. aurantiaca seemed to differ from what has been observed previously for the regulation of pyrimidine biosynthesis in related Pseudomonas species. This investigation could prove helpful to future work studying pseudomonad taxonomic analysis as well as to those exploring antifungal and antimicrobial agents produced by P. aurantiaca.


Aspartate Carbamoyltransferase/metabolism , Pseudomonas/metabolism , Pyrimidine Nucleotides/biosynthesis , Pyrimidines/metabolism , Aspartate Carbamoyltransferase/genetics , Biosynthetic Pathways , Diphosphates , Gene Expression Regulation, Bacterial , Orotate Phosphoribosyltransferase/genetics , Orotidine-5'-Phosphate Decarboxylase/metabolism , Pseudomonas/enzymology , Pyrimidine Nucleotides/metabolism , Succinic Acid/metabolism , Uracil/metabolism
10.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1320-1334, 2020.
Article En | MEDLINE | ID: mdl-31997698

CAD, the multienzymatic protein that initiates and controls the de novo biosynthesis of pyrimidines, plays a major role in nucleotide homeostasis, cell growth and proliferation. Despite its interest as a potential antitumoral target, there is a lack of understanding on CAD's structure and functioning mechanisms. Although mainly identified as a cytosolic complex, different studies support the translocation of CAD into the nucleus, where it could have a yet undefined function. Here, we track the subcellular localization of CAD by using fluorescent chimeras, cell fractionation and immunoblotting with specific antibodies. Contradicting previous studies, we demonstrate that CAD is exclusively localized at the cytosol and discard a possible translocation to the nucleus.


Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Dihydroorotase/metabolism , Pyrimidines/biosynthesis , Active Transport, Cell Nucleus , Cell Line , Humans
11.
FEBS J ; 287(16): 3579-3599, 2020 08.
Article En | MEDLINE | ID: mdl-31967710

Aspartate transcarbamoylase (ATCase) is a key enzyme which regulates and catalyzes the second step of de novo pyrimidine synthesis in all organisms. Escherichia coli ATCase is a prototypic enzyme regulated by both product feedback and substrate cooperativity, whereas human ATCase is a potential anticancer target. Through structural and biochemical analyses, we revealed that R167/130's loop region in ATCase serves as a gatekeeper for the active site, playing a new and unappreciated regulatory role in the catalytic cycle of ATCase. Based on virtual compound screening simultaneously targeting the new regulatory region and active site of human ATCase, two compounds were identified to exhibit strong inhibition of ATCase activity, proliferation of multiple cancer cell lines, and growth of xenograft tumors. Our work has not only revealed a previously unknown regulatory region of ATCase that helps uncover the catalytic and regulatory mechanism of ATCase, but also successfully guided the identification of new ATCase inhibitors for anticancer drug development using a dual-targeting strategy. DATABASE: Structure data are available in Protein Data Bank under the accession numbers: 6KJ7 (G166P ecATCase), 6KJ8 (G166P ecATCase-holo), 6KJ9 (G128/130A ecATCase), and 6KJA (G128/130A ecATCase-holo).


Aspartate Carbamoyltransferase/antagonists & inhibitors , Catalytic Domain , Enzyme Inhibitors/pharmacology , Molecular Dynamics Simulation , Allosteric Regulation , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Biocatalysis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Female , HeLa Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Sequence Homology, Amino Acid , Xenograft Model Antitumor Assays/methods
12.
Int J Mol Sci ; 21(1)2020 Jan 03.
Article En | MEDLINE | ID: mdl-31947715

Aspartate transcarbamoylase (ATCase) has been studied for decades and Escherichia coli ATCase is referred as a "textbook example" for both feedback regulation and cooperativity. However, several critical questions about the catalytic and regulatory mechanisms of E. coli ATCase remain unanswered, especially about its remote feedback regulation. Herein, we determined a structure of E. coli ATCase in which a key residue located (Arg167) at the entrance of the active site adopted an uncommon open conformation, representing the first wild-type apo-form E. coli ATCase holoenzyme that features this state. Based on the structure and our results of enzymatic characterization, as well as molecular dynamic simulations, we provide new insights into the feedback regulation of E. coli ATCase. We speculate that the binding of pyrimidines or purines would affect the hydrogen bond network at the interface of the catalytic and regulatory subunit, which would further influence the stability of the open conformation of Arg167 and the enzymatic activity of ATCase. Our results not only revealed the importance of the previously unappreciated open conformation of Arg167 in the active site, but also helped to provide rationalization for the mechanism of the remote feedback regulation of ATCase.


Aspartate Carbamoyltransferase/chemistry , Escherichia coli/enzymology , Amino Acid Sequence , Aspartate Carbamoyltransferase/metabolism , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli/metabolism , Kinetics , Molecular Dynamics Simulation , Protein Conformation
13.
Gut ; 69(1): 158-167, 2020 01.
Article En | MEDLINE | ID: mdl-30833451

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Aspartate Carbamoyltransferase/genetics , Aspartic Acid/analogs & derivatives , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Dihydroorotase/genetics , Estrogen Receptor alpha/metabolism , Fulvestrant/pharmacology , Hepatitis D, Chronic/drug therapy , Phosphonoacetic Acid/analogs & derivatives , Pyrimidines/biosynthesis , Antiviral Agents/pharmacology , Aspartate Carbamoyltransferase/antagonists & inhibitors , Aspartate Carbamoyltransferase/metabolism , Aspartic Acid/pharmacology , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/antagonists & inhibitors , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line , Dihydroorotase/antagonists & inhibitors , Dihydroorotase/metabolism , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Gene Silencing , Hepatitis D, Chronic/genetics , Hepatitis D, Chronic/metabolism , Hepatitis Delta Virus/physiology , Hepatocytes , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin Resistance , Life Cycle Stages , Loss of Function Mutation , Phosphonoacetic Acid/pharmacology , RNA Interference , RNA, Small Interfering/genetics , RNA, Viral/metabolism , Signal Transduction , Virus Replication
14.
Subcell Biochem ; 93: 505-538, 2019.
Article En | MEDLINE | ID: mdl-31939163

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein that carries the enzymatic activities for the first three steps in the de novo biosynthesis of pyrimidine nucleotides: glutamine-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase and Dihydroorotase. This metabolic pathway is essential for cell growth and proliferation and is conserved in all living organisms. However, the fusion of the first three enzymatic activities of the pathway into a single multienzymatic protein only occurs in animals. In prokaryotes, by contrast, these activities are encoded as distinct monofunctional enzymes that function independently or by forming more or less transient complexes. Whereas the structural information about these enzymes in bacteria is abundant, the large size and instability of CAD has only allowed a fragmented characterization of its structure. Here we retrace some of the most significant efforts to decipher the architecture of CAD and to understand its catalytic and regulatory mechanisms.


Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Dihydroorotase/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Pyrimidines/biosynthesis , Animals , Aspartate Carbamoyltransferase/chemistry , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/chemistry , Dihydroorotase/chemistry
15.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Article En | MEDLINE | ID: mdl-30100185

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Genomics , Metabolomics , Neoplasms/pathology , Urea/metabolism , Amino Acid Transport Systems, Basic/metabolism , Animals , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line, Tumor , Dihydroorotase/genetics , Dihydroorotase/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Mitochondrial Membrane Transport Proteins , Neoplasms/metabolism , Ornithine Carbamoyltransferase/antagonists & inhibitors , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphorylation/drug effects , Pyrimidines/biosynthesis , Pyrimidines/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
16.
Sci Rep ; 8(1): 11079, 2018 07 23.
Article En | MEDLINE | ID: mdl-30038211

Aspartate carbamoyltransferase (ATCase) is a large dodecameric enzyme with six active sites that exhibits allostery: its catalytic rate is modulated by the binding of various substrates at distal points from the active sites. A recently developed method, bond-to-bond propensity analysis, has proven capable of predicting allosteric sites in a wide range of proteins using an energy-weighted atomistic graph obtained from the protein structure and given knowledge only of the location of the active site. Bond-to-bond propensity establishes if energy fluctuations at given bonds have significant effects on any other bond in the protein, by considering their propagation through the protein graph. In this work, we use bond-to-bond propensity analysis to study different aspects of ATCase activity using three different protein structures and sources of fluctuations. First, we predict key residues and bonds involved in the transition between inactive (T) and active (R) states of ATCase by analysing allosteric substrate binding as a source of energy perturbations in the protein graph. Our computational results also indicate that the effect of multiple allosteric binding is non linear: a switching effect is observed after a particular number and arrangement of substrates is bound suggesting a form of long range communication between the distantly arranged allosteric sites. Second, cooperativity is explored by considering a bisubstrate analogue as the source of energy fluctuations at the active site, also leading to the identification of highly significant residues to the T ↔ R transition that enhance cooperativity across active sites. Finally, the inactive (T) structure is shown to exhibit a strong, non linear communication between the allosteric sites and the interface between catalytic subunits, rather than the active site. Bond-to-bond propensity thus offers an alternative route to explain allosteric and cooperative effects in terms of detailed atomistic changes to individual bonds within the protein, rather than through phenomenological, global thermodynamic arguments.


Aspartate Carbamoyltransferase/metabolism , Protein Multimerization , Adenosine Triphosphate/metabolism , Allosteric Regulation , Allosteric Site , Aspartate Carbamoyltransferase/chemistry , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Catalytic Domain , Cytidine Triphosphate/metabolism , Enzyme Stability , Models, Molecular , Phosphonoacetic Acid/analogs & derivatives , Phosphonoacetic Acid/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Substrate Specificity
17.
J Comput Biol ; 25(5): 480-486, 2018 05.
Article En | MEDLINE | ID: mdl-29481292

PFstats is a software developed for the extraction of useful information from protein multiple sequence alignments. By analyzing positional conservation and residue coevolution networks, the software allows the identification of structurally and functionally important residue groups and the discovery of probable functional subclasses. Furthermore, it contains tools for the identification of the possible biological significance of these findings. PFstats contains methods for maximizing the significance of alignments through filtering and weighting, residue conservation and coevolution analysis, automatic UniprotKb queries for residue-position annotation and many possible data visualization methods.


Aspartate Carbamoyltransferase/metabolism , Citrate (si)-Synthase/metabolism , Multigene Family , Ornithine Carbamoyltransferase/metabolism , Protein Interaction Maps , Sequence Analysis, Protein/methods , Software , Aspartate Carbamoyltransferase/chemistry , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Citrate (si)-Synthase/chemistry , Computational Biology , Databases, Protein , Humans , Ornithine Carbamoyltransferase/chemistry
18.
Xenotransplantation ; 25(2): e12386, 2018 03.
Article En | MEDLINE | ID: mdl-29430727

Antibody-mediated rejection is a barrier to the clinical application of xenotransplantation, and xenoantigens play an important role in this process. Early research suggested that N-acetyl-D-galactosamine (GalNAc) could serve as a potential xenoantigen. GalNAc is the immunodominant glycan of the Sda antigen. Recently, knockout of ß1,4-N-acetylgalactosaminyltransferase 2 (ß1,4GalNAcT-II) from the pig results in a decrease in binding of human serum antibodies to pig cells. It is believed that this is the result of the elimination of the GalNAc on the Sda antigen, which is catalyzed by the enzyme, ß1,4GalNAcT-II. However, research into human blood group antigens suggests that only a small percentage (1%-2%) of people express anti-Sda antibodies directed to Sda antigen, and yet a majority appear to have antibodies directed to the products of pig B4GALNT2. Questions can therefore be asked as to (i) whether the comprehensive structure of the Sda antigen in humans, that is, the underlying sugar structure, is identical to the Sda antigen in pigs, (ii) whether the human anti-Sda antibody binds ubiquitously to pig cells, but not to human cells, and (iii) what role the Sda++ (also called Cad) antigen is playing in this discrepancy. We review what is known about these antigens and discuss the discrepancies that have been noted above.


Antigens, Heterophile/metabolism , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Cycle Proteins/metabolism , Dihydroorotase/metabolism , Heterografts/metabolism , Nuclear Proteins/metabolism , Animals , Glycosyltransferases/metabolism , Humans , Polysaccharides/metabolism , Transplantation, Heterologous/methods
19.
Biochem Biophys Res Commun ; 497(3): 835-842, 2018 03 11.
Article En | MEDLINE | ID: mdl-29476738

Aspartate transcarbamoylase catalyzes the second step of de-novo pyrimidine biosynthesis. As malarial parasites lack pyrimidine salvage machinery and rely on de-novo production for growth and proliferation, this pathway is a target for drug discovery. Previously, an apo crystal structure of aspartate transcarbamoylase from Plasmodium falciparum (PfATC) in its T-state has been reported. Here we present crystal structures of PfATC in the liganded R-state as well as in complex with the novel inhibitor, 2,3-napthalenediol, identified by high-throughput screening. Our data shows that 2,3-napthalediol binds in close proximity to the active site, implying an allosteric mechanism of inhibition. Furthermore, we report biophysical characterization of 2,3-napthalenediol. These data provide a promising starting point for structure based drug design targeting PfATC and malarial de-novo pyrimidine biosynthesis.


Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Aspartate Carbamoyltransferase/antagonists & inhibitors , Plasmodium falciparum/enzymology , Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Catalytic Domain/drug effects , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Molecular Docking Simulation , Plasmodium falciparum/chemistry , Plasmodium falciparum/drug effects
20.
Protein Sci ; 26(11): 2221-2228, 2017 Nov.
Article En | MEDLINE | ID: mdl-28833948

A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non-polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild-type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate-analog bound conformation and the third hinge angle is intermediate to the other two. The active-site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active-site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active-site conformations.


Amino Acid Substitution , Aspartate Carbamoyltransferase/chemistry , Aspartic Acid/chemistry , Allosteric Regulation , Amino Acid Motifs , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/metabolism , Aspartic Acid/metabolism , Biocatalysis , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Substrate Specificity , Thermodynamics
...